

- opposed to reward functions.

Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning

Trevor Ablett*, Bryan Chan*, Jonathan Kelly (*equal contribution) University of Toronto

Code github.com/utiasSTARS/lfgp

Blog post papers.starslab.ca/lfgp

Results

		J	
t Sizes	Reuse	Single	Total
LM: 9k/task	45k	9k	54k
LM: 9k/task	45k	9k	54k
LM: 9k/task	54k	0	54k
RLM : 9k/task	54k	9k	63k
(low: 9k)	0	54k	54k
(low: 9k)	0	54k	54k
(low: 9k)	0	54k	54k
(low: 9k)	0	63k	63k

- Single-task methods have 6-7x more main task data than multitask methods.
- Multitask methods *reuse* expert data between main tasks.
- Multitask methods can also transfer existing agents to new main tasks.

Conclusion

 LfGP outperforms both multitask baselines and single-task AIL (DAC) by enforcing exploration. • Performs comparably to single-task BC, but allows reusable expert data and models.