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Learning from Guided Play:
Improving Exploration for Adversarial Imitation

Learning with Simple Auxiliary Tasks
Trevor Ablett1, Bryan Chan2, and Jonathan Kelly1

Abstract—Adversarial imitation learning (AIL) has become a
popular alternative to supervised imitation learning that reduces
the distribution shift suffered by the latter. However, AIL requires
effective exploration during an online reinforcement learning
phase. In this work, we show that the standard, naı̈ve approach
to exploration can manifest as a suboptimal local maximum
if a policy learned with AIL sufficiently matches the expert
distribution without fully learning the desired task. This can
be particularly catastrophic for manipulation tasks, where the
difference between an expert and a non-expert state-action pair
is often subtle. We present Learning from Guided Play (LfGP),
a framework in which we leverage expert demonstrations of
multiple exploratory, auxiliary tasks in addition to a main task.
The addition of these auxiliary tasks forces the agent to explore
states and actions that standard AIL may learn to ignore.
Additionally, this particular formulation allows for the reusability
of expert data between main tasks. Our experimental results in
a challenging multitask robotic manipulation domain indicate
that LfGP significantly outperforms both AIL and behaviour
cloning, while also being more expert sample efficient than these
baselines. To explain this performance gap, we provide further
analysis of a toy problem that highlights the coupling between
a local maximum and poor exploration, and also visualize the
differences between the learned models from AIL and LfGP.3

Index Terms—Imitation Learning, Reinforcement Learning,
Transfer Learning

I. INTRODUCTION

EXPLORATION is a crucial part of effective reinforce-
ment learning (RL). A variety of methods have attempted

to optimize the exploration-exploitation trade-off of RL agents
[1]–[3], but the development of a technique that generalizes
across domains remains an open research problem. A simple,
well-known approach to reduce the need for random explo-
ration is to provide a dense, or “shaped,” reward to learn from,
but this can be very challenging to design appropriately [4].
Furthermore, the environment may not directly provide the
low-level state information required for such a reward. An
alternative to providing a dense reward is to learn a reward
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Fig. 1: Learning from Guided Play (LfGP) finds an effective stacking
policy by learning to compose multiple simple auxiliary tasks (only
Reach is shown, for this episode) along with stacking. Discrim-
inator Actor-Critic (DAC) [7], or off-policy AIL, reaches a local
maximum action-value function and policy, failing to solve the task.
Arrow direction indicates mean policy velocity action, red-to-yellow
(background) indicates low-to-high learned value, while arrow colour
indicates probability of closing (green) or opening (blue) the gripper.

function from expert demonstrations of a task, in a process
known as inverse RL (IRL) [5]. Many modern approaches
to IRL are part of the adversarial imitation learning (AIL)
family [6]. In AIL, rather than learning a reward function
directly, the policy and a learned discriminator form a two-
player min-max optimization problem, where the policy aims
to confuse the discriminator by producing expert-like data,
while the discriminator attempts to classify expert and non-
expert data.

Although AIL has been shown to be more expert sample
efficient than supervised imitation learning (also known as be-
havioural cloning, or BC) in continuous-control environments
[6]–[8], its application to long-horizon robotic manipulation
tasks with a wide distribution of possible initial configurations
remains challenging [7], [9]. In this work, we investigate the
use of AIL in a multitask robotic manipulation domain. We
find that a state-of-the-art AIL method, in which off-policy
learning is used to maximize environment sample efficiency [7]
(i.e., reduce the quantity of environment interaction required
from the online RL portion of AIL), is outperformed by BC

https://papers.starslab.ca/lfgp
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Fig. 2: The main components of our system for learning from guided play. In a multitask environment, a guide prompts an expert for a mix
of multitask demonstrations, after which we learn a multitask policy through scheduled hierarchical AIL.

with an equivalent amount of expert data, contradicting previ-
ous results [6]–[8]. Through a simplified example, simulated
robotic experiments, and learned model analysis, we show
that this outcome occurs because a model learned with expert
data and a discriminator is susceptible to the deceptive reward
problem [10]. In other words, while AIL, and more generally
IRL, can provide something akin to a dense reward, this reward
is not necessarily optimal for teaching, and AIL alone does
not enforce sufficiently diverse exploration to escape locally
optimal but globally poor models. A locally-optimal policy has
converged to match a subset of the expert data, but in doing
so, avoids crucial states and actions (e.g., in Fig. 1, grasping
the blue block) required to globally match the full expert set.

To overcome this limitation of AIL, we present Learning
from Guided Play (LfGP),4 in which we combine AIL with a
scheduled approach to hierarchical RL (HRL) [12], allowing
an agent to ‘play’ in the environment with an expert guide.
Using expert demonstrations of multiple relevant auxiliary
tasks (e.g., Reach, Lift, Move-Object), along with a main task
(e.g., Stack, Bring, Insert), our scheduled hierarchical agent
is able to learn tasks where AIL alone fails. Crucially, our
formulation also allows auxiliary expert data to be reused
between main tasks, further emphasizing the expert sample
efficiency of our method.

We use the word play to describe an agent that simulta-
neously attempts and learns numerous tasks at once, freely
composing them together, inspired by the playful (as opposed
to goal-directed) phase of learning experienced by children
[12]. In our case, guided represents two separate but related
ideas: first, that the expert guides this play, as opposed to
requiring hand-crafted sparse rewards as in [12] (right side
of Fig. 2), and second, that the expert gathering of multitask,
semi-structured demonstrations is guided by uniform-random
task selection (middle of Fig. 2), rather than requiring the
expert to choose transitions between goals, as in [13], [14].
Our specific contributions are the following:

1) A novel application of a hierarchical framework [12] to
AIL that learns a reward and policy for a challenging

4Originally presented as a non-archival workshop paper [11].

main task by simultaneously learning rewards and poli-
cies for auxiliary tasks.

2) Manipulation experiments in which we demonstrate that
AIL fails, while LfGP significantly outperforms both
AIL and BC.

3) A thorough ablation study to examine the effects of
various design choices for LfGP and our baselines.

4) Empirical analysis, including a simplified representative
example and visualization of the learned models of LfGP
and AIL, to better understand why AIL fails and how
LfGP improves upon it.

II. PROBLEM FORMULATION

A Markov decision process (MDP) is defined as M =
〈S,A, R,P, ρ0, γ〉, where the sets S and A are respectively
the state and action space, R : S×A→ R is a reward function,
P is the state-transition environment dynamics distribution, ρ0
is the initial state distribution, and γ is the discount factor.
Actions are sampled from a stochastic policy π(a|s). The
policy π interacts with the environment to yield experience
(st, at, rt, st+1) for t = 0, . . . ,∞, where s0 ∼ ρ0(·), at ∼
π(·|st), st+1 ∼ P(·|st, at), rt = R(st, at). When referring to
finite-horizon tasks, t = T indicates the final timestep of a
trajectory.

For notational convenience, we assume infinite-horizon,
non-terminating environments where t is unbounded, but
the extension to the finite-horizon case is trivial. We aim
to learn a policy π that maximizes the expected return
J(π) = Eπ [G(τ0:∞)] = Eπ [

∑∞
t=0 γ

tR(st, at)], where
τt:∞ = {(st, at), . . . } is the trajectory starting with (st, at),
and G(τt:∞) is the return of trajectory τ .

In this work, we focus on imitation learning (IL), where
R is unknown and instead we are given a finite set of expert
demonstration (s, a) pairs BE =

{
(s, a)E , . . .

}
. In AIL, we

attempt to simultaneously learn π and a discriminator D : S×
A→ [0, 1] that differentiates between expert samples (s, a)E

and policy samples (s, a)π and subsequently define R using D
[6], [7]. To accommodate hierarchical learning, we augment
M to contain auxiliary tasks, where Taux = {T1, . . . , TK} are
separate MDPs that share S,A,P, ρ0 and γ with the main
task Tmain but have their own reward functions, Rk. With this



ABLETT et al.: LEARNING FROM GUIDED PLAY 3

Fig. 3: An MDP, analogous to stacking, with an expert demonstration.
Poor exploration can lead AIL to learn a suboptimal policy.

modification, we refer to entities in our model that are specific
to task T ∈ Tall, Tall = Taux ∪ {Tmain}, as (·)T . We assume
that we have a set of expert data BET for each task.

III. LOCAL MAXIMUM WITH OFF-POLICY AIL

In this section, we provide a representative example of how
AIL can fail by reaching a locally maximum policy due to a
learned deceptive reward [10] coupled with poor exploration.
A simple six-state MDP is shown in Fig. 3, with ten state-
conditional actions. We refer to actions as at = anm and states
as st = sn where t, n and m refer to the current timestep,
current state, and next state, respectively. The reward function
is R(s5, a55) = +1, R(s1, a15) = −5 and 0 for all other state-
action pairs. The initial state s1 is always s1, the fixed horizon
length is 5, and no discounting is used.

The MDP is meant to be roughly analogous to a stacking
manipulation task: s2, s3, s4 and s6 represent the first block
being reached, grasped, lifted, and dropped respectively. State
s5 represents the gripper hovering over the second block
(whether the first block has been stacked or not), while s1 is
the reset state, and a15 represents reaching s5 without grasping
the first block. Taking action a15 results in a total return of
-1 (because R(s1, a15) = −5), since the first block has not
actually been grasped. In our case, the agent does not receive
any reward, and instead an expert demonstration of the optimal
trajectory is provided. We will assume access to a learned
(perfect) discriminator, and will use the AIRL [8] reward, so
state-action pairs in the expert set receive +1 reward and all
others receive -1.

We define the action-value Q(st, at) as the expected
value of taking action at in state st, and initialize it to
zero for all (s, a) pairs. We define our update rule as the
standard Q-Learning update [1], Q(st, at) = Q(st, at) +
α (R(st, at) + maxaQ(st+1, a)−Q(st, at)), with α = 0.1.
The agent uses ε-greedy exploration, storing each (st, at, st+1)
tuple into a buffer. After each episode, all Q values are updated
to convergence using the whole buffer.

After the first complete episode of {a15, a55, a55, a55, a55},
Q(s1, a15) = 2.7, and Q(s1, a12) = 0. In the second
({a12, a26, a61, a15, a55}) and third ({a12, a23, a36, a61, a15})
episodes, the agent initially moves in the correct direction, but

ultimately still fails. The final Q values in s1 are Q(s1, a15) =
0.49 and Q(s1, a12) = 0.13.5

A policy maximizing Q, having simultaneously learned to
avoid s6 (by avoiding s2 and s3) and exploiting the (s5, a55)
expert pair, will choose a1 = a15, giving a final return of
-1 in the real MDP. This behaviour matches what we see in
Fig. 1: due to the large negative reward from dropping the
block, AIL learns a policy that avoids stacking altogether and
merely reaches the second block, just as AIL here learns to
skip s2 and s3 and exploit a55. In both cases, poor initial
exploration leads to a deceptive reward, which exacerbates
poor exploration.

IV. LEARNING FROM GUIDED PLAY (LFGP)

We now introduce Learning from Guided Play (LfGP). Our
primary goal is to learn a policy πTmain that can solve the main
task Tmain, with a secondary goal of also learning auxiliary task
policies πT1 , . . . , πTK that are used for improved exploration.
More specifically, we derive a hierarchical learning objective
that is decomposed into three parts: i) recovering the reward
function of each task with expert demonstrations, ii) training
all policies to achieve their respective goals, and iii) using all
policies for effective exploration in Tmain. For a summary of
the algorithm, see supplementary material link in Footnote 3.

A. Learning the Reward Function

We first describe how to recover the reward functions from
expert demonstrations. For each task T ∈ Tall, we learn a dis-
criminator DT (s, a) that is used to define the reward function
for policy optimization. We construct the joint discriminator
loss following [7] to train each discriminator in an off-policy
manner:

L(D) = −
∑
T ∈Tall

EB [log (1−DT (s, a))]

+EBE
T
[log (DT (s, a))] .

(1)

Each resulting discriminator DT attempts to differentiate the
occupancy measure between the distributions induced by BET
and B. We can use DT to define various reward functions [7];
following [8], we define the reward function for each task T
to be RT (st, at) = log (DT (st, at))− log (1−DT (st, at)).

B. Learning the Hierarchical Agent

We adapt Scheduled Auxiliary Control (SAC-X) [12] to
learn the hierarchical agent. The agent includes low-level
intention policies (equivalently referred to as intentions), a
high-level scheduler policy, as well as the Q-functions and the
discriminators. The intentions aim to solve their corresponding
tasks (i.e., the intention πT aims to maximize the task return
J(πT )), whereas the scheduler aims to maximize the expected
return for Tmain by selecting a sequence of intentions to interact
with the environment. For the remainder of the paper, when
we refer to a policy, we are referring to an intention policy,
as opposed to the scheduler, unless otherwise specified.

5See six_state_mdp.py from open source code to reproduce.
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1) Learning the Intentions: We learn each intention using
Soft Actor-Critic (SAC) [15], an actor-critic algorithm that
maximizes the entropy-regularized objective, though any off-
policy RL algorithm would suffice. The objective is

J(πT ) = EπT

[ ∞∑
t=0

γt (RT (st, at) + αH(πT (·|st)))
]
, (2)

where the learned temperature α determines the importance
of the entropy term and H(πT (·|st)) is the entropy of the
intention πT at state st. The soft Q-function is

QT (st, at) = RT (st, at)

+ EπT

[ ∞∑
t=0

γt(RT (st+1, at+1) + αH(πT (·|st+1)))

]
.

(3)
The intentions maximize the joint policy objective

L(πint) =
∑
T ∈Tall

Es∼Ball,a∼πT (·|s) [QT (s, a)− α log πT (a|s)] ,

(4)
where πint refers to the set of intentions {πTmain , πT1 , . . . , πTK}
and Ball refers to buffer containing every transition from
interactions and demonstrations, as is done in [16], [17].

For policy evaluation, the soft Q-functions QT for each πT
minimize the joint soft Bellman residual

L(Q) =
∑
T ∈Tall

E(s,a,s′)∼Ball,a′∼πT (·|s′)
[
(QT (s, a)− δT )2

]
,

(5)
δT = RT (s, a) + γ (QT (s

′, a′)− α log πT (a
′|s′)) . (6)

Crucially, because each task shares the common S,A,P, ρ0,
and γ, and we are using off-policy learning, all tasks can learn
from all data, as in [12].

2) The Scheduler: SAC-X formulates learning the sched-
uler by maximizing the expected return of the main task
[12]. In particular, let H be the number of possible intention
switches within an episode and let each chosen intention
execute for ξ timesteps. The H intention choices made within
the episode are defined as T 0:H−1 =

{
T (0), . . . , T (H−1)},

where T (h) ∈ Tall. The return of the main task, given chosen
intentions, is then defined as

GTmain(T 0:H−1) =

H−1∑
h=0

(h+1)ξ−1∑
t=hξ

γtRTmain(st, at), (7)

where at ∼ πT (h)(·|st) is the action taken at timestep t,
sampled from the chosen intention T (h) in the hth scheduler
period. The scheduler for the hth period PhS aims to maxi-
mize the expected main task return: E

[
GTmain(T h:H−1)|PhS

]
.

Although SAC-X describes a method to learn the scheduler
[12], we find that a combination of two simple task-agnostic
heuristics performs similarly in practice (see Section V-C2).

Specifically, we use a weighted random scheduler (WRS)
combined with handcrafted trajectories (HC). The WRS forms
a prior categorical distribution over the set of tasks, with a
higher probability mass pTmain for the main task and pTmain

K for
all other tasks. This approach is comparable to the uniform
scheduler from [12], with a bias towards the main task. The

HC component is a small set of handcrafted trajectories of
tasks that are sampled half of the time, forcing the scheduler
to explore trajectories that would clearly be beneficial for
completing the main task. The chosen handcrafted trajectories
can be found in our code and in our supplementary material.

C. Breaking Out of Local Maxima with LfGP

Returning to the discussion in Section III, resolving the
local maximum problem with LfGP is straightforward. Sup-
pose we include a go-right auxiliary task with BEgo-right =
{(s1, a12), (s2, a23), (s3, a34)}. When the scheduler chooses
the go-right intention, the agent does not exploit the a55 action
because the go-right discriminator learns that R(s5, a55) =
−1. Since the transitions are stored in the shared buffer that
the main intention also samples from, the agent can quickly
obtain the correct, optimal value.

D. Expert Data Collection

We assume that each T ∈ Tall has, for evaluation purposes
only, a binary indicator of success. In single-task imitation
learning where this assumption is valid, expert data is typically
collected by allowing the expert to control the agent until
success conditions are met. At that point, the environment is
reset following ρ0 and collection is repeated for a fixed number
of episodes or (s, a) pairs. We collect our expert data in this
way for each T separately.

V. EXPERIMENTS

In this work, we are interested in answering the following
questions about LfGP:

1) How does the performance of LfGP compare with BC
and AIL in challenging manipulation tasks, in terms of
success rate and expert sample efficiency?

2) What parts of LfGP are necessary for success?
3) How do the policies and action value functions differ

between AIL and LfGP?

A. Experimental Setup

We complete experiments in a simulation environment con-
taining a Franka Emika Panda manipulator, one green and
one blue block in a tray, fixed zones corresponding to the
green and blue blocks, and one slot in each zone with < 1mm

Fig. 4: Example successful runs of our four main tasks. Top to
bottom: Stack, Unstack-Stack, Bring, Insert.
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Fig. 5: Performance results for LfGP, multitask BC, single-task BC, and DAC on all four tasks considered in this work. The x-axis corresponds
to both gradient updates and environments steps for LfGP and DAC, and gradient updates only for both versions of BC. The shaded area
corresponds to standard deviation across five seeds. LfGP significantly outperforms the baselines on all tasks, and even in Bring where it is
matched by single-task BC, it is far more expert sample efficient.

tolerance for fitting the blocks (see bottom right of Fig. 4).
The robot is controlled via delta-position commands, and the
blocks and end-effector can both be reset anywhere above the
tray. The environment is designed such that several different
challenging tasks can be completed within a common observa-
tion and action space. The main tasks that we investigate are
Stack, Unstack-Stack, Bring, and Insert (see Fig. 4). For more
details on our environment and definitions of task success, see
supplementary material link in Footnote 3. We also define a set
of auxiliary tasks: Open-Gripper, Close-Gripper, Reach, Lift,
Move-Object, and Bring (Bring is both a main task and an
auxiliary task for Insert), all of which are reusable between
main tasks.

We compare our method to several standard multitask and
single-task baselines. A multitask algorithm simultaneously
learns to complete a main task as well as auxiliary tasks,
while the single-task algorithms only learn to complete the
main task. In general, we consider a multitask algorithm to be
more useful than a single-task algorithm, given the potential
to reuse expert data and trained models for learning new tasks.
To ensure a fair comparison, we provide single-task algorithms
with an equivalent amount of total expert data as our multitask
methods, as shown in Table I.

In our main experiments, we compare LfGP to a mul-
titask variant of behavioural cloning (BC), single-task BC,
and Discriminator-Actor-Critic (DAC) [7], a state-of-the-art
approach to AIL. We train multitask BC with a multitask mean
squared error objective,

L(πint) =
∑
T ∈Tall

∑
(s,a)∈BE

T

(πT (s)− a)2 , (8)

while BC is trained with the corresponding single task version.
Following recent trends in improving BC performance, we
train our BC baselines with the same number of gradient
updates as LfGP and DAC, evaluating the policies at the same
frequency. This adjustment has been shown to dramatically
increase the performance of BC [18], [19], particularly com-
pared to the more common practice of using early stopping,
as is done in [6], [7]. We validate that this change signifi-
cantly improves BC performance in our ablation study (see
Section V-C4).

We gather expert data by first training an expert policy using
Scheduled Auxiliary Control (SAC-X) [12]. We then run the

Task Dataset Sizes Reuse Single Total

Multi Stack SOCRLM: 1k/task 5k 1k 6k
task U-Stack UOCRLM: 1k/task 5k 1k 6k

Bring BOCRLM: 1k/task 6k 0 6k
Insert IBOCRLM: 1k/task 6k 1k 7k

Single Stack S: 6k 0 6k 6k
Task U-Stack U: 6k 0 6k 6k

Bring B: 6k 0 6k 6k
Insert I: 6k 0 7k 7k

TABLE I: The number of (s, a) pairs used for each main and auxiliary
task. The table illustrates the reusability of the expert data used to
generate the performance results described in Section V-B. Each letter
under “Dataset Sizes” is the first letter of a single (auxiliary) task,
and bolded letters indicate that a dataset was reused for more than
one main task (e.g., Open-Gripper was used for all four main tasks).
Multitask methods (e.g., LfGP) are able to reuse a large portion of the
expert data, while single-task methods (e.g., single-task BC) cannot.

expert policies to collect various amounts of expert data as
described in Section IV-D and Table I. We also collect an extra
200 expert (sT ,0) pairs per auxiliary task, where T refers to
the final timestep of an individual episode and 0 is an action
of all zeros. This is equivalent to adding example data, as is
done in example-based RL [20]. This addition improved final
task performance, likely because it biases the reward towards
completing the final task. It is worth noting that, in the real
world, final states are easier to collect than full demonstrations,
and LfGP does not require any modifications to accommodate
these extra examples. Finally, even without this addition, LfGP
still outperforms the baselines (see Section V-C1).

B. Performance Results

Performance results for all methods and main tasks are
shown in Fig. 5. We freeze the policies every 100k steps
and evaluate those policies for 50 randomized episodes, using
only the mean action outputs for stochastic policies. For all
algorithms, we test across five seeds and report the mean and
standard deviation of all seeds.

In Stack, Unstack-Stack, and Insert, LfGP achieves expert
performance, while the baselines all perform significantly
worse. In Bring, LfGP does not quite achieve expert per-
formance, and is matched by single-task BC. However, we
note that LfGP is much more expert data efficient than single-
task BC because it reuses auxiliary task data (see Table I).
A more direct comparison is multitask BC, which performs
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Fig. 7: Left: Scheduler ablations for training LfGP, WRS is weighted random scheduler, HC is handcraft; Middle: Expert sampling ablations
for training LfGP/DAC; Right: Baseline ablations for training BC/DAC.

much more poorly than LfGP across all tasks, including Bring.
Intriguingly, DAC also performs very poorly on all tasks, a
phenomenon that we further explore in Section VI.

C. Ablation Study

While the fundamental idea of LfGP is relatively straight-
forward, it is worth considering alternatives to some of the
specific choices made for our experiments. In this section,
we complete an ablation study where we vary (a) the expert
dataset, including size, subsampling, and inclusion of extra
(sT ,0) pairs; (b) the type of scheduler used for LfGP (see
Section IV-B2); (c) the sampling strategy used for expert data;
and (d) the method for training our baselines. To reduce the
computational load of completing these experiments, all of
these variations were carried out exclusively for our Stack task.
All ablation results are shown in Fig. 6 and Fig. 7.

1) Dataset Ablations: We tested the following dataset vari-
ations: (a) half and one and a half times the original expert
dataset size; (b) subsampling BE , taking only every 20th
timestep, as is done in [6], [7]; and (c) replacing the 200 extra
(sT ,0) pairs in each buffer with 200 regular trajectory (s, a)
pairs. Notably, even in the challenging regimes of halving
and subsampling the dataset, LfGP still learns an expert-level
policy (albeit more slowly).

2) Scheduler Ablations: We tested the following scheduler
variations: (a) Weighted Random Scheduler (WRS) only, re-
moving the Handcrafted (HC) addition; (b) a learned sched-
uler, as is used in [12]; and (c) no scheduler, in which only the
main task is attempted, akin to the Intentional Unintentional
Agent [12], [21]. Both WRS versions learn slightly faster than
the learned scheduler, but all three methods outperform the No
Scheduler ablation, replicating results from [12] demonstrating
the importance of actually exploring all auxiliary tasks. Per-

haps surprisingly, the HC modification made little difference
compared with WRS only, but it is possible that for even more
complex tasks, this could change.

3) Expert Sampling Ablations: For our main performance
experiments, we modified standard AIL in two ways: (a) we
added expert buffer sampling to π and Q updates, in addition
to the D updates, as is done in [16], [17]; and (b) we biased the
sampling of BE when training D to be 95% final (sT ,0) pairs.
We tested both LfGP and DAC without these additions. For
LfGP, although these modifications improve learning speed,
they are not required to generate an expert policy. For DAC,
performance is quite poor regardless of these adjustments.

4) Baseline Ablations: To verify that we evaluated against
fair baselines, we tested two alternatives to those used for our
main performance experiments: (a) an early stopping variation
of BC, in which each expert buffer is divided into a 70%/30%
train/validation split, taking the policy after validation error has
not improved for 100 epochs; and (b) the on-policy variant
of DAC, also known as Generative Adversarial Imitation
Learning (GAIL) [6]. Notably, the early stopping variants of
BC, commonly used as baselines in other AIL work [6], [7],
[22] perform dramatically more poorly than those used in our
experiments, verifying recent trends [18], [19].

VI. LEARNED MODEL ANALYSIS

In this section, we further examine the learned Stack models
of LfGP and DAC. We take snapshots of the average per-
forming models from LfGP and DAC at four points during
learning: 200k, 400k, 600k, and 800k model updates and
environment steps. Although the initial gripper and block
positions are randomized between episodes during learning,
for each snapshot, we reset the stacking environment to a
single set of representative initial conditions. We then run the
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LfGP – Open-Gripper LfGP – Close-Gripper LfGP – Reach LfGP – Lift LfGP – Move-Object LfGP – Stack DAC – Stack

Fig. 8: The policy outputs (arrows) and Q values (background) for each LfGP task and for DAC at 200k environment steps. The arrows show
velocity direction/magnitude, blue → green indicates open-gripper → close-gripper. For Q values, red → yellow indicates low → high. The
LfGP policies and Q functions are reasonable for all tasks, while DAC has only learned to reach toward and above the green block.

snapshot policies for a single exploratory trajectory, using the
stochastic outputs of each policy as well as, for LfGP, the
WRS+HC scheduler. Trajectories from these runs are shown
in Fig. 9.

DAC is unable to learn to grasp or even reach the blue
block and ultimately settles on a policy that learns to reach
and hover near the green block. This is understandable—DAC
learns a deceptive reward for hovering above the green block
regardless of the position of the blue block, because it has not
sufficiently explored the alternative of first grasping the blue
block. Even if hovering above the green block does not fully
match the expert data, the DAC policy receives some reward
for doing so, as evidenced by the learned Q value on the right
side of Fig. 8.

In comparison, even after only 200k environment steps,
LfGP learns to reach and push the blue block, and by 600k
steps, grasp, move, and nearly stack it. By enforcing explo-
ration of sub-tasks that are crucial to completing the main task,
LfGP ensures that the distribution of expert stacking data is
fully matched.

VII. RELATED WORK

Imitation learning is often divided into two main categories:
behavioural cloning (BC) [23], [24] and inverse reinforcement
learning (IRL) [5], [25]. BC recovers the expert policy via
supervised learning, but it suffers from compounding errors
due to covariate shift [23], [26]. Alternatively, IRL partially
alleviates the covariate shift problem by estimating the reward
function and then applying RL using the learned reward.
A popular approach to IRL is adversarial imitation learning
(AIL) [6], [7], [27], in which the expert policy is recovered
by matching the occupancy measure between the generated
data and the demonstration data. Our proposed method en-
hances existing AIL algorithms by enabling exploration of

Fig. 9: LfGP and DAC trajectories of the gripper, blue block, and
green block for four stack episodes with consistent initial conditions
throughout the learning process. The LfGP episodes, each including
auxiliary task sub-trajectories, demonstrate significantly more variety
than the DAC trajectories.

key auxiliary tasks via the use of a scheduled multitask model,
simultaneously resolving the susceptibility of AIL to deceptive
rewards.

Agents learned via hierarchical reinforcement learning
(HRL), which act over multiple levels of temporal abstractions
in long planning horizon tasks, are shown to provide more
effective exploration than agents operating over only a single
level of abstraction [12], [28], [29]. Our approach for learning
agents most closely resembles hierarchical AIL methods that
attempt to combine AIL with HRL [27], [30]–[32]. Existing
work [30]–[32] often formulates the hierarchical agent using
the Options framework [28] and learns the reward function
with AIL [6]. Both [30] and [32] leverage task-specific expert
demonstrations to learn options using mixture-of-experts and
expectation-maximization strategies, respectively. In contrast,
our work focuses on expert demonstrations that include multi-
ple reusable auxiliary tasks, each of which has clear semantic
meaning.

In the multitask setting, [27] and [31] leverage unsegmented,
multitask expert demonstrations to learn low-level policies via
a latent variable model. Other work has used a large corpus
of unsegmented but semantically meaningful “play” expert
data to bootstrap policy learning [13], [14]. We define our
expert dataset as being derived from guided play, in that the
expert completes semantically meaningful auxiliary tasks with
provided transitions, reducing the burden on the expert to
generate these data arbitrarily and simultaneously providing
auxiliary task labels. Compared with learning from unseg-
mented demonstrations, the use of segmented demonstrations,
as in [33], ensures that we know which auxiliary tasks our
model will be learning, and opens up the possibility of expert
data reuse and also transfer learning. Finally, we deviate from
the Options framework and build upon Scheduled Auxiliary
Control (SAC-X) to train our hierarchical agent, since SAC-
X has been shown to work well for challenging manipulation
tasks [12].

VIII. LIMITATIONS

Our approach is not without limitations. While we were
able to use LfGP in six and seven-task settings, the number
of tasks for which this method would become intractable is
unclear. LfGP needs access to segmented expert data as well;
in many cases, this is reasonable, and is also required to
be able to reuse auxiliary task data between main tasks, but
it does necessitate extra care during expert data collection.
Also, LfGP requires pre-defined auxiliary tasks: while this is
a common approach to hierarchical RL (see [34], Section 3.1,
for numerous examples), choosing these tasks may sometimes
present a challenge. Finally, compared with methods that use
offline data exclusively (e.g., BC), for our tasks, LfGP requires
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many online environment steps to learn a high-quality policy.
This data gathering could be costly if human supervision was
necessary. It is worth noting that, because LfGP is already a
multitask method, this final point could be partially resolved
through the use of multitask reset-free RL [35].

IX. CONCLUSION

We have shown how adversarial imitation learning can fail
at challenging manipulation tasks because it learns deceptive
rewards. We demonstrated that this can be resolved with
Learning from Guided Play (LfGP), in which we introduce
auxiliary tasks and the corresponding expert data, guiding the
agent to playfully explore parts of the state and action space
that would have been avoided otherwise. We demonstrated that
our method dramatically outperforms both BC and AIL base-
lines, particularly in the case of AIL. Furthermore, our method
can leverage reusable expert data, making it significantly more
expert sample efficient than the highest-performing baseline,
and its learned auxiliary task models can be applied to transfer
learning. In future work, we intend to investigate transfer
learning to determine if overall policy learning time can be
reduced.
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APPENDIX A
LEARNING FROM GUIDED PLAY ALGORITHM

The complete pseudo-code is given in Algorithm 1. Our
implementation builds on RL Sandbox [36], an open-source
PyTorch [37] framework for RL algorithms. For learning
the discriminators, we follow DAC and apply a gradient
penalty for regularization [7], [38]. We optimize the intentions
via the reparameterization trick [40]. As is commonly done
in deep RL, we use the Clipped Double Q-Learning trick
[41] to mitigate overestimation bias [42] and use a target
network to mitigate learning instability [43] when training
the policies and Q-functions. We also learn the temperature
parameter αT separately for each task T (see Section 5 of [44]
for more details on learning α). For Generative Adversarial
Imitation Learning (GAIL), we use a common open-source
PyTorch implementation [45]. The hyperparameters chosen for
all methods are provided in Section G. Please see videos at
papers.starslab.ca/lfgp for examples of what LfGP looks like
in practice.

Algorithm 1 Learning from Guided Play (LfGP)
Input: Expert replay buffers BEmain,BE1 , . . . ,BEK , scheduler
period ξ, sample batch size N
Parameters: Intentions πT with corresponding Q-functions
QT and discriminators DT , and scheduler πS (e.g. with Q-
table QS)

1: Initialize replay buffer B
2: for t = 1, . . . , do
3: # Interact with environment
4: For every ξ steps, select intention πT using πS
5: Select action at using πT
6: Execute action at and observe next state s′t
7: Store transition 〈st, at, s′t〉 in B
8:
9: # Update discriminator DT ′ for each task T ′

10: Sample {(si, ai)}Ni=1 ∼ B
11: for each task T ′ do
12: Sample {(s′i, a′i)}Bi=1 ∼ BEk
13: Update DT ′ following Eq. (1) using GAN + Gradient

Penalty
14: end for
15:
16: # Update intentions πT ′ and Q-functions QT ′ for each

task T ′
17: Sample {(si, ai)}Ni=1 ∼ B
18: Compute reward DT ′(si, ai) for each task T ′
19: Update π and Q following Eq. (4) and Eq. (5)
20:
21: # Optional Update learned scheduler πS
22: if at the end of effective horizon then
23: Compute main task return GTmain using reward esti-

mate from Dmain
24: Update πS (e.g. update Q-table QS following

Eq. (A.3) and recompute Boltzmann distribution)
25: end if
26: end for

A. Scheduler Details

1) Learning the Scheduler: As stated in our paper, our
main experiments used a simple weighted random scheduler
with handcrafted trajectories. In this section, we provide the
details of our learned scheduler. Following [12], let H be the
total number of possible intention switches within an episode
and let each chosen intention execute for ξ timesteps. The
H intention choices made within the episode are defined as
T 0:H−1 =

{
T (0), . . . , T (H−1)}, where T (h) ∈ Tall. The main

task’s return given chosen intentions is then defined as

GTmain(T 0:H−1) =

H−1∑
h=0

(h+1)ξ−1∑
t=hξ

γtRTmain(st, at), (A.1)

where at ∼ πT (h)(·|st) is the action taken at
timestep t, sampled from the chosen intention T (h)

in the hth scheduler period. We further define the
Q-function for the scheduler as QS(T 0:h−1, T (h)) =
ET h:H−1∼Ph:H−1

S

[
GTmain(T h:H−1)|T 0:h−1] and represent the

scheduler for the hth period as a softmax distribution PhS over
{QS(T 0:h−1, Tmain), QS(T 0:h−1, T1), . . . , QS(T 0:h−1, TK)}.
The scheduler maximizes the expected return of the main
task following the scheduler:

L(S) = ET (0)∼P 0
S

[
QS(∅, T (0))

]
. (A.2)

We use Monte Carlo returns to estimate QS , estimating the
expected return using the exponential moving average:

QS(T 0:h−1, T (h)) = (1− φ)QS(T 0:h−1, T (h))

+φGTmain(T h:H),
(A.3)

where φ ∈ [0, 1] represents the amount of discounting on older
returns and GTmain(T h:H) is the cumulative discounted return
of the trajectory starting at timestep hξ.

B. Weighted Random Scheduler Plus Handcrafted Trajectories

As stated in our paper, the main experiments were com-
pleted with the described weighted random scheduler (WRS)
combined with some simple handcrafted trajectories (HC)
that we expected to be beneficial for learning each of
the main tasks. In this section, we provide further de-
tails of these handcrafted scheduler trajectories. Given a
chosen proportion hyperparameter (0.5 in our experiments),
we randomly sampled full trajectories from the lists below
at the beginning of training episodes, and otherwise sam-
pled from the regular WRS. For all four tasks Main =
{Stack, Unstack-Stack, Bring, Insert}, we provided the fol-
lowing set of trajectories:

1) Reach, Lift, Main, Open-Gripper, Reach, Lift, Main,
Open-Gripper.

2) Reach, Lift, Move-Object, Main, Open-Gripper, Reach,
Lift, Move-Object.

3) Lift, Main, Open-Gripper, Lift, Main, Open-Gripper,
Lift, Main.

4) Main, Open-Gripper, Main, Open-Gripper, Main, Open-
Gripper, Main, Open-Gripper.

papers.starslab.ca/lfgp
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TABLE II: The components used in our environment observations,
common to all tasks. Grip finger position is a continuous value from
0 (closed) to 1 (open).

Component Dim Unit Privileged? Extra info

EE pos. 3 m No rel. to base
EE velocity 3 m/s No rel. to base
Grip finger pos. 6 [0, 1] No current, last 2
Block pos. 6 m Yes both blocks
Block rot. 8 quat Yes both blocks
Block trans vel. 6 m/s Yes rel. to base
Block rot vel. 6 rad/s Yes rel. to base
Block rel to EE 6 m Yes both blocks
Block rel to block 3 m Yes in base frame
Block rel to slot 6 m Yes both blocks
Force-torque 6 N,Nm No at wrist

Total 59

5) Move-Object, Main, Open-Gripper, Move-Object, Main,
Open-Gripper, Move-Object, Main.

For insert, in addition to the trajectories listed above, we added
two more trajectories to specifically accommodate Bring as an
auxiliary task:

1) Bring, Insert, Open-Gripper, Bring, Insert, Open-
Gripper, Bring, Insert.

2) Reach, Lift, Bring, Insert, Open-Gripper, Reach, Lift,
Bring.

APPENDIX B
ENVIRONMENT DETAILS

Fig. 10: An image of our multitask environment immediately after a
reset has been carried out.

A screenshot of our environment, simulated in PyBullet
[47], is shown in Fig. 10. We chose this environment because
we desired tasks that a) have a large distribution of possible
initial states, representative of manipulation in the real world,
b) have a shared observation/action space with several other

tasks, allowing the use of auxiliary tasks and transfer learning,
and c) require a reasonably long horizon and significant use of
contact to solve. The environment contains a tray with sloped
edges (to keep the blocks within the reachable workspace of
the end-effector), as well as a green and a blue block, each
of which is 4 cm × 4 cm × 4 cm and has a mass of 100 g.
The dimensions of the lower part of the tray, before reaching
the sloped edges, are 30 cm × 30 cm. The dimensions of the
‘bring’ boundaries (shaded blue and green regions) are 8 cm
× 8 cm, while the dimensions of the insertion slots, which
are directly in the center of each shaded region, are 4.1 cm ×
4.1 cm × 1 cm. The boundaries for end-effector movement,
relative to the tool center point that is directly between the
gripper fingers, are a 30 cm × 30 cm × 14.5 cm box, where
the bottom boundary is low enough to allow the gripper to
interact with objects, but not to collide with the bottom of the
tray.

See Table II for a summary of our environment observations.
In this work, we use privileged state information (e.g., block
poses), but adapting our method to exclusively use image-
based data is straightforward since we do not use hand-crafted
reward functions as in [12].

The environment movement actions are 3-DOF translational
position changes, where the position change is relative to the
current end-effector position. We leverage PyBullet’s built-in
position-based inverse kinematics function to generate joint
commands. Our actions also contain a fourth dimension that
corresponds to actuating the gripper. To allow for the use
of policy models with exclusively continuous outputs, this
dimension accepts any real number, with any value greater
than 0 commanding the gripper to open, and any number less
than 0 commanding it to close. Actions are supplied at a rate
of 20 Hz, and each training episode is limited to 18 seconds,
corresponding to 360 time steps per episode. For play-based
expert data collection, we also reset the environment manually
every 360 time steps. Between episodes, block positions are
randomized to any pose within the tray, and the end-effector
is randomized to any position between 5 and 14.5 cm above
the tray, within the earlier stated end-effector bounds, with
the gripper fully opened. The only exception to these initial
conditions is during expert data collection and agent training
of the Unstack-Stack task: in this case, the green block is
manually set to be on top of the blue block at the start of the
episode.

APPENDIX C
PERFORMANCE RESULTS FOR AUXILIARY TASKS

The performance results for all multitask methods and
all auxiliary tasks are shown in Fig. 11. Multitask BC has
gradually decreasing performance on many of the auxiliary
tasks as the number of updates increases, which is consistent
with mild overfitting. Intriguingly, however, multitask BC
does achieve quite reasonable performance on many of the
auxiliary tasks (such as Lift) without needing any of the extra
environment interactions required by an online method such
as LfGP or DAC. An interesting direction for future work is to
determine whether pretraining via multitask BC could provide
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Fig. 11: Performance for LfGP and the multitask baselines across all tasks, shaded area corresponds to standard deviation.

any improvements in environment sample efficiency. We did
attempt to do this, but found that it resulted in poorer final
performance than training from scratch.

APPENDIX D
PROCEDURE FOR OBTAINING EXPERTS

As stated, we used SAC-X [12] to train models that we
used for generating expert data. We used the same hyperpa-
rameters that we used for LfGP (see Table III), apart from
the discriminator, which, of course, does not exist in SAC-X.
See Section E for details on the hand-crafted rewards that we
used for training these models. For an example of gathering
play-based expert data, please see our attached video.

We made two modifications to regular SAC-X to speed up
learning. First, we pre-trained a Move-Object model before
transferring this model to each of our main tasks, as we did
in Section 5.3 of our main paper, since we found that SAC-X
would plateau when we tried to learn the more challenging
tasks from scratch. The need for this modification demon-
strates another noteworthy benefit of LfGP—when training
LfGP, main tasks could be learned from scratch, and generally
in fewer time steps, than it took to train our experts. Second,
during transfer to the main tasks, we used what we called a
conditional weighted scheduler instead of a Q-Table: we de-
fined weights for every combination of tasks, so that the sched-
uler would pick each task with probability P (T (h)|T (h−1)),
ensuring that ∀T ′ ∈ Tall,

∑
T ∈Tall

P (T |T ′) = 1. The weights
that we used were fairly consistent between main tasks, and
can be found in our packaged code. The conditional weighted
scheduler ensured that every task was still explored throughout
the learning process, so that we would have high-quality
experts for every auxiliary task in addition to the main task.
This scheduler can be considered as a more complex alter-
native to the weighted random scheduler or the addition with
handcrafted trajectories from our main paper, and again shows
the flexibility of using a semantically-meaningful multitask
policy with a common observation and action space.

APPENDIX E
EVALUATION

As stated in our paper, we evaluated all algorithms by
testing the mean output of the main task policy head in
our environment and determining a success rate based on 50
randomly selected resets. These evaluation episodes were run
for 360 time steps to match our training process, and if a
condition for success was met within that time, they were
recorded as a success. The rest of this section describes in
detail how we evaluated ‘success’ for each of our main and
auxiliary tasks.

As previously stated, we trained experts using a modified
SAC-X [12] that required us to define a set of reward functions
for each task, which we include in this section. The authors
of [12] focused on sparse rewards but also showed a few
experiments in which dense rewards reduced the time to learn
adequate policies, so we chose to use dense rewards. We note
that many of these reward functions are particularly com-
plex and required significant manual shaping effort, further
motivating the use of an imitation learning scheme like the
one presented in our paper. It is possible that we could have
made do with sparse rewards, such as those used in [12], but
our compute resources made this impractical—for example,
in [12], their agent took 5000 episodes × 36 actors × 360
time steps = 64.8 M time steps to learn their stacking task,
which would have taken over a month of wall clock time on
our fastest machine. To see the specific values used for the
rewards and success conditions described in these sections,
please review our code.

Unless otherwise stated, each of the success conditions in
this section had to be held for 10 time steps, or 0.5 seconds,
before being registered as a success. This choice was made
to prevent registering a success when, for example, the blue
block slipped off the green block during the Stack task.
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A. Common

For each of these functions, we use the following common
labels:
• pb: blue block position,
• vb: blue block velocity,
• ab: blue block acceleration,
• pg: green block position,
• pe: end-effector tool center point position (TCP),
• ps: center of a block pushed into one of the slots,
• g1: (scalar) gripper finger 1 position,
• g2: (scalar) gripper finger 2 position, and
• ag: (scalar) gripper open/close action.

A block is flat on the tray when pb,z = 0 or pg,z = 0. To
further reduce training time for SAC-X experts, all rewards
were set to 0 if ‖pb−pe‖ > 0.1 and ‖pg−pe‖ > 0.1 (i.e., the
TCP must be within 10 cm of either block). During training
while using the Unstack-Stack variation of our environment,
a penalty of -0.1 was added to each reward if ‖pg,z‖ > 0.001
(i.e., there was a penalty to all rewards if the green block was
not flat on the tray).

B. Stack/Unstack-Stack

The evaluation conditions for Stack and Unstack-Stack are
identical, but in our Unstack-Stack experiments, the environ-
ment is manually set to have the green block start on top of
the blue block.

1) Success: Using internal PyBullet commands, we check
to see whether the blue block is in contact with the green
block and is not in contact with either the tray or the gripper.

2) Reward: We include a term for checking the distance
between the blue block and the spot above the the green block,
a term for rewarding increasing distance between the block and
the TCP once the block is stacked, a term for shaping lifting
behaviour, a term to reward closing the gripper when the block
is within a tight reaching tolerance, and a term for rewarding
the opening the gripper once the block is stacked.

C. Bring/Insert

We use the same success and reward calculations for Bring
and Insert, but for Bring the threshold for success is 3 cm,
and for insert, it is 2.5 mm.

1) Success: We check that the distance between pb and
ps is less than the defined threshold, that the blue block is
touching the tray, and that the end-effector is not touching the
block. For Insert, the block can only be within 2.5 mm of the
insertion target if it is correctly inserted.

2) Reward: We include a term for checking the distance
between the pb and ps and a term for rewarding increas-
ing distance between pb and pe once the blue block is
brought/inserted.

D. Open-Gripper/Close-Gripper

We use the same success and reward calculations for Open-
Gripper and Close-Gripper, apart from inverting the condition.

1) Success: For Open-Gripper and Close-Gripper, we check
to see if ag < 0 or ag > 0 respectively.

2) Reward: We include a term for checking the action, as
we do in the success condition, and also include a shaping term
that discourages high magnitudes of the movement action.

E. Lift

1) Success: We check to see if pb,z > 0.06.
2) Reward: We add a dense reward for checking the height

of the block, but specifically also check that the gripper
positions correspond to being closed around the block, so that
the block does not simply get pushed up the edges of the tray.
We also include a shaping term for encouraging the gripper
to close when the block is reached.

F. Reach

1) Success: We check to see if ‖pe − pb‖ < 0.015.
2) Reward: We have a single dense term to check the

distance between pe and pb.

G. Move-Object

For Move-Object, we changed the required holding time for
success to 1 second, or 20 time steps.

1) Success: We check to see if the vb > 0.05 and ab < 5.
The acceleration condition ensures that the arm has learned to
move the block by following a smooth trajectory, rather than
vigorously shaking it or continuously picking up and dropping
it.

2) Reward: We include a velocity term and an acceleration
penalty, as in the success condition, but also include a dense
bonus for lifting the block.

APPENDIX F
RETURN PLOTS

As previously stated, we generated hand-crafted reward
functions for each of our tasks for the purpose of training
our SAC-X experts. Given that we have these rewards, we
can also generate return plots corresponding to our results
to add extra insight (see Fig. 12 and Fig. 13). The patterns
displayed in these plots are, for the most part, quite similar
to the success rate plots. One notable exception is that there
is an eventual increase in performance when training DAC on
Insert, indicating that, perhaps for certain tasks, DAC alone
can eventually make progress. Nevertheless, it is clear that
LfGP improves learning efficiency, and it is unclear whether
DAC would plateau even if it was trained for a longer period.

APPENDIX G
MODEL ARCHITECTURES AND HYPERPARAMETERS

All the single-task models share the same network architec-
tures and all the multitask models share the same network
architectures. All layers are initialized using the PyTorch
default methods [37].

For the single-task variant, the policy is a fully-connected
network with two hidden layers followed by ReLU activation.
Each hidden layer consists of 256 hidden units. The output of
the policy for LfGP and DAC is split into two vectors, mean
µ̂ and variance σ̂2. For both variants of BC, only the mean µ̂
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Fig. 12: Episode return for LfGP compared with all baselines. Shaded area corresponds to standard deviation.
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Fig. 13: Episode return for LfGP compared with multitask baselines on all tasks. Shaded area corresponds to standard deviation.

output is used. The vectors define a Gaussian distribution (i.e.
N(µ̂, σ̂2I), where I is the identity matrix). When computing
actions, we squash the samples using the tanh function and
bound the actions to be in range [−1, 1], as done in SAC
[44]. The variance σ̂2 is computed by applying a softplus
function followed by a sum with an epsilon ε = 1e-7 to
prevent underflow: σ̂i = softplus(x̂i) + ε. The Q-functions
are fully-connected networks with two hidden layers followed
by ReLU activations. Each hidden layer consists of 256 units.
The output of the Q-function is a scalar corresponding to the
value estimate given the current state-action pair. Finally, the
discriminator is a fully-connected network with two hidden
layers followed by tanh activations. Each hidden layer consists
of 256 units. The output of the discriminator is a scalar logit
to be used as an input to the sigmoid function. The sigmoid
function output can be viewed as the probability of the current
state-action pair coming from the expert distribution.

For multitask variant, the policies and the Q-functions share
their initial layers. There are two shared, fully-connected
layers followed by ReLU activations. Each layer consists of
256 units. The output of the last shared layer is then fed into
the policies and Q-functions. Each policy head and Q-function

head corresponds to one task and has the same architecture:
a two-layered fully-connected network followed by ReLU
activations. The output of the policy head corresponds to the
parameters of a Gaussian distribution, as described previously.
Similarly, the output of the Q-function head corresponds to the
value estimate. Finally, the discriminator is a fully-connected
network with two hidden layers followed by tanh activations.
Each hidden layer consists of 256 units. The output of the
discriminator is a vector, where the ith entry corresponds to
the logit input to the sigmoid function for task Ti. The ith

sigmoid function output corresponds to the probability of the
current state-action pair coming from the expert distribution
in task Ti.

The hyperparameters for our experiments are listed in
Table III and Table V. In the early-stopping variant of BC,
overfit tolerance refers to the number of full dataset training
epochs without an improvement in validation error before we
stop training. All models are optimized using Adam Optimizer
[48] with PyTorch default values, unless specified otherwise.

APPENDIX H
OPEN-ACTION AND CLOSE-ACTION
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TABLE III: Hyperparameters for AIL algorithms across all tasks.
Parameters that do not appear in the original version of DAC are
shown in blue.

Algorithm LfGP DAC

Total Interactions 2M (4M for Insert)
Buffer Size 2M (4M for Insert)
Buffer Warmup 25k
Initial Exploration 50k
Evaluations per task 50
Evaluation frequency 100k interactions

Intention
γ 0.99
Batch Size 256
Q Update Freq. 1
Target Q Update Freq. 1
π Update Freq. 1
Polyak Averaging 1e-4
Q Learning Rate 3e-4
π Learning Rate 1e-5
α Learning Rate 3e-4
Initial α 1e-2
Target Entropy −dim(a) = −4
Max. Gradient Norm 10
π Weight Decay 1e-2
Q Weight Decay 1e-2
BE sampling proportion 0.1
BE sampling decay 0.99999

Discriminator
Learning Rate 3e-4
Batch Size 256
Gradient Penalty λ 10
Weight Decay 1e-2
(sT ,0) sampling bias 0.95

TABLE IV: Hyperparameters for LfGP schedulers.

Scheduler Learned WRS WRS + HC

ξ 45 N/A N/A
φ 0.6 N/A N/A
Initial Temp. 360 N/A N/A
Temp. Decay 0.9995 N/A N/A
Min. Temp. 0.1 N/A N/A
Main Task Rate N/A 0.5 0.5
Handcraft Rate N/A N/A 0.5

DISTRIBUTION MATCHING

There was one exception to the method we used for col-
lecting our expert data. Specifically, our Open-Gripper and
Close-Gripper tasks required additional considerations. It is
worth reminding the reader that our Open-Gripper and Close-
Gripper tasks were meant to simply open or close the gripper,
respectively, while remaining reasonably close to either block.
If we were to use the approach described above verbatim,
the Open-Gripper and Close-Gripper data would contain no
(s, a) pairs where the gripper actually released or grasped
the block, instead immediately opening or closing the gripper
while simply hovering near the blocks. Perhaps unsurprisingly,
this was detrimental to our algorithm’s performance: as one
example, an agent attempting to learn Stack would, if Open-
Gripper was selected while the blue block was held above

TABLE V: Hyperparameters for BC algorithms (both single-task and
multitask) across all tasks.

Version Main Results Early Stopping

Batch Size 256
Learning Rate 1e-5
Weight Decay 1e-2
Total Updates 2M (4M for Insert) N/A
Overfit Tolerance N/A 100

the green block, move the grasped blue block away from the
green block before dropping it on the tray. This behaviour, of
course, is not what we would want, but it better matches an
expert distribution when the environment is reset in between
each task execution.

To mitigate this, our Open-Gripper data actually contain a
mix of each of the other sub-tasks called for the first 45 time
steps, followed by a switch to Open-Gripper, ensuring that
the expert dataset contains some degree of block-releasing,
with the trade-off being that 50% of the Open-Gripper expert
data is specific to whatever the main task happens to be. We
left this additional detail out of our main paper for clarity,
since it corresponds to only a small portion of the expert
data (every other auxiliary task was fully reused). Similarly,
the Close-Gripper data calls Lift for 15 time steps before
switching to Close-Gripper, ensuring that the Close-gripper
dataset will contain a large proportion of data where the block
is actually grasped. For the Closer-gripper data, however, this
modification did still allow data to be reused between main
tasks.

APPENDIX I
ATTEMPTED AND FAILED EXPERIMENTS

In this section, we provide a list of experiments and modi-
fications that did not improve performance, in addition to the
alternatives that did.

1) Pretraining with BC: We attempted to pretrain LfGP
using multitask BC, and then to transition to online
learning with LfGP, but we found that this tended to
produce significantly poorer final performance. Some
existing work [49], [50] has investigated transitioning
from BC to online RL, but achieving this consistently,
especially with off-policy RL, remains an open research
problem.

2) Handcrafted Open-Gripper/Close-Gripper policies:
Given the simplicity of designing a reward function in
these two cases, a natural question is whether Open-
Gripper and Close-Gripper could use hand-crafted re-
ward functions, or even hand-crafted policies, instead of
these specialized datasets. In our experiments, both of
these alternatives proved to be quite detrimental to our
algorithm.

3) Penalizing Q values: In our early experiments, we
found that LfGP training progress was harmed by ex-
ploding Q values. This problem was particularly exac-
erbated when we added BE sampling to our Q and π
updates. It appears that this occurs because, at the begin-
ning of training, the differences between discriminator
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outputs for expert data and non-expert data are so large
that the bootstrap Q updates quickly jump to unrealistic
values. We attempted to use various forms of Q penalties
to resolve this, akin to Conservative Q Learning (CQL)
[51], but found that all of our modifications ultimately
harmed final performance. Some of the things we tried,
in addition to the CQL loss, were reducing γ (.95, .9),
clipping Q losses to -5, +5, smooth L1 loss, huber loss,
increased gradient penalty λ for D (50, 100), decreased
reward scaling (.1), more discriminator updates per π/Q
update (10), and weight decay in D only (as is done
in [9]). We ultimately resolved exploding Q values by
i) decreasing polyak averaging to a significantly lower
value than is used in much other work (1e-4 as opposed
to the SAC default of 5e-3), and ii) adding in weight
decay (with a significantly higher value used than is
used in other work) to π, Q, and D training (which was
required to not overfit with the reduced polyak averaging
value). Without the added weight decay, performance
started to plateau and eventually to decrease.

4) Higher Update-to-Data (UTD) Ratio: Recent work in
RL has started increasing the UTD ratio (i.e., increas-
ing the number of policy/Q updates per environment
interaction), with the goal of improving environment
sample efficiency [53]. We were actually able to increase
this from 1 to 2 and achieve a marginal improvement
in environment sample efficiency, but this also nearly
doubled the running time of our experiments, so we
opted not to include this modification in our final results.
Higher values of the UTD ratio also caused our Q values
to explode.

APPENDIX J
EXPERIMENTAL HARDWARE

For a list of the software we used in this work, see our code
and instructions. We used a number of different computers and
GPUs when completing our experiments:

1) GPU: NVidia Quadro RTX 8000, CPU: AMD - Ryzen
5950x 3.4 GHz 16-core 32-thread, RAM: 64GB, OS:
Ubuntu 20.04.

2) GPU: NVidia V100 SXM2, CPU: Intel Gold 6148
Skylake @ 2.4 GHz (only used 4 threads), RAM: 32GB,
OS: CentOS 7.

3) GPU: Nvidia GeForce RTX 2070, CPU: RYZEN
Threadripper 2990WX, RAM: 32GB, OS: Ubuntu 20.04.
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