
Learning from Guided Play: Improving Exploration in Adversarial
Imitation Learning with Simple Auxiliary Tasks – Appendix

Trevor Ablett∗,1, Bryan Chan∗,1, and Jonathan Kelly1

TABLE I: The components used in our environment observations,
common to all tasks. Grip finger position is a continuous value from
0 (closed) to 1 (open).

Component Dim Unit Privileged? Extra info

EE pos. 3 m No rel. to base
EE velocity 3 m/s No rel. to base
Grip finger pos. 6 [0, 1] No current, last 2
Block pos. 6 m Yes both blocks
Block rot. 8 quat Yes both blocks
Block trans vel. 6 m/s Yes rel. to base
Block rot vel. 6 rad/s Yes rel. to base
Block rel to EE 6 m Yes both blocks
Block rel to block 3 m Yes in base frame
Block rel to slot 6 m Yes both blocks
Force-torque 6 N,Nm No at wrist

Total 59

APPENDIX I
LEARNING FROM GUIDED PLAY ALGORITHM

The complete pseudo-code is given in Algorithm Algo-
rithm 1. Our implementation builds on RL Sandbox [1], an
open-source PyTorch [2] implementation for RL algorithms.
For learning the discriminators, we apply gradient penalty
to regularize the discriminators [3], as done in DAC [4].
We optimize the intentions via the reparameterization trick
[5]. As commonly done in deep RL algorithms, we use the
Clipped Double Q-Learning trick [6] to mitigate overestima-
tion bias [7] and use a target network to mitigate learning
instability [8] when training the Q-functions. We also learn
the temperature parameter αT separately for each task T
(see Section 5 of [9] for more details on learning α). For
Generative Adversarial Imitation Learning (GAIL), we use a
commonly used open-source PyTorch implementation [10].
The hyperparameters are provided in Section VII. Please see
videos at papers.starslab.ca/lfgp for examples of
what LfGP looks like in practice.

APPENDIX II
ENVIRONMENT DETAILS

A screenshot of our environment, simulated in PyBullet
[11], is shown in Fig. 1. We chose this environment because
we desired tasks that a) have a large distribution of possible
initial states, representative of manipulation tasks in the

∗Equal contribution.
1Authors are with the Space & Terrestrial Autonomous Robotic Systems

(STARS) Laboratory at the University of Toronto Institute for Aerospace
Studies (UTIAS), Toronto, Ontario, Canada, M3H 5T6. Email: <first
name>.<last name>@robotics.utias.utoronto.ca

Fig. 1: An image of our multitask environment immediately after
a reset.

real world, b) have a shared observation/action space with
several other tasks, allowing the use of auxiliary tasks and
transfer learning, and c) require a reasonably long horizon
and significant use of contact to solve. The environment
contains a tray with sloped edges to keep the blocks within
the reachable workspace of the end-effector, as well as a
green and a blue block, each of which are 4 cm × 4 cm
× 4 cm and set to a mass of 100 g. The dimensions of the
lower part of the tray, before reaching the sloped edges, are
30 cm × 30 cm. The dimensions of the bring boundaries
(shaded blue and green regions) are 8 cm × 8 cm, while the
dimensions of the insertion slots, which are directly in the
center of each shaded region, are 4.1 cm × 4.1 cm × 1 cm.
The boundaries for end-effector movement, relative to the
tool center point that is directly between the gripper fingers,
are a 30 cm × 30 cm × 14.5 cm box, where the bottom
boundary is low enough to allow the gripper to interact with
objects, but not to collide with the bottom of the tray.

See Table I for a summary of our environment obser-
vations. In this work, we use privileged state information
(e.g., block poses), but adapting our method to exclusively
use image-based data is straightforward since we do not use
hand-crafted reward functions as in [12].

The environment movement actions are 3-DOF transla-

papers.starslab.ca/lfgp


Algorithm 1 Learning from Guided Play (LfGP)
Input: Expert replay buffers BEmain,BE1 , . . . ,BEK , scheduler
period ξ, sample batch size N
Parameters: Intentions πT with corresponding Q-functions
QT and discriminators DT , and scheduler πS (e.g. with Q-
table QS)

1: Initialize replay buffer B
2: for t = 1, . . . , do
3: # Interact with environment
4: For every ξ steps, select intention πT using πS
5: Select action at using πT
6: Execute action at and observe next state s′t
7: Store transition 〈st, at, s′t〉 in B
8:
9: # Update discriminator DT ′ for each task T ′

10: Sample {(si, ai)}Ni=1 ∼ B
11: for each task T ′ do
12: Sample {(s′i, a′i)}

B
i=1 ∼ BEk

13: Update DT ′ following equation 3 using GAN +
Gradient Penalty

14: end for
15:
16: # Update intentions πT ′ and Q-functions QT ′ for each

task T ′
17: Sample {(si, ai)}Ni=1 ∼ B
18: Compute reward DT ′(si, ai) for each task T ′
19: Update π and Q following equations 7 and 8
20:
21: # Update scheduler πS if necessary
22: if at the end of effective horizon then
23: Compute main task return GTmain using reward esti-

mate from Dmain
24: Update πS (e.g. update Q-table QS following equa-

tion 12 and recompute Boltzmann distribution)
25: end if
26: end for

tional position changes, where the position change is relative
to the current end-effector position, and we leverage PyBul-
let’s built-in position-based inverse kinematics function to
generate joint commands. Our actions also contain a fourth
dimension for actuating the gripper. To allow for the use
of policy models with exclusively continuous outputs, this
dimension accepts any real number, with any value greater
than 0 commanding the gripper to open, and any number
lower than 0 commanding it to close. Actions are supplied
at a rate of 20 Hz, and each training episode is limited to
being 18 seconds long, corresponding to 360 time steps per
episode. For play-based expert data collection, we also reset
the environment manually every 360 time steps. Between
episodes, block positions are randomized to any pose within
the tray, and the end-effector is randomized to any position
between 5 and 14.5 cm above the tray, within the earlier
stated end-effector bounds, with the gripper fully opened.
The only exception to these initial conditions is during expert

data collection and agent training of the Unstack-Stack task:
in this case, the green block is manually set to be on top of
the blue block at the start of the episode.

APPENDIX III
PERFORMANCE RESULTS FOR AUXILIARY TASKS

The performance results for all multitask methods and
all auxiliary tasks are shown in Figure Fig. 2. One notable
finding is that multitask BC tends to perform quite well
on the auxiliary tasks, and, in fact, for all auxiliary tasks,
outperforms LfGP. We suspect this is because, compared
to the main task, the auxiliary tasks are shorter horizon
and simpler than the main task, making them very good
candidates for BC. Furthermore, since LfGP maximizes the
expected return of the main task, LfGP does not necessarily
perform as well on the auxiliary tasks compared to multitask
BC, which simultaneously matches the expert for all tasks.
A natural followup question is whether we could combine
the benefits of quick learning using multitask BC on the
simpler auxiliary tasks with the improved performance of
LfGP on main tasks—our preliminary results were negative
so we leave this as future work.

APPENDIX IV
PROCEDURE FOR OBTAINING EXPERTS

As stated, we used SAC-X [12] to train models that we
used for generating expert data. We used the same hyper-
parameters as we used for LfGP (see Table II), apart from
the discriminator which, of course, does not exist in SAC-X.
See Section V for details on the hand-crafted rewards that we
used for training these models. For an example of gathering
play-based expert data, please see our attached video.

We made two modifications to regular SAC-X to speed up
learning. First, we pre-trained a Move-Object model before
transferring it to each of our main tasks, as we did in
Section 5.3 of our main paper, since we found that SAC-
X would plateau when we tried to learn the more chal-
lenging tasks from scratch. The need for this modification
demonstrates another noteworthy benefit of LfGP—when
training LfGP, main tasks could be learned from scratch,
and generally in fewer time steps, than it took to train
our experts. Second, during the transfer to the main tasks,
we used what we called a conditional weighted scheduler
instead of a Q-Table: we defined weights for every com-
bination of tasks, so that the scheduler would pick each
task with probability P (T (h)|T (h−1)), ensuring that ∀T ′ ∈
Tall,

∑
T ∈Tall

P (T |T ′) = 1. The weights that we used were
fairly consistent between main tasks, and can be found in our
included code. The conditional weighed scheduler ensured
that every task was still explored throughout the learning
process, ensuring that we would have high-quality experts
for every auxiliary task, in addition to the main task.

A. Play-Based Expert Data Collection Results

We refer to the strategy used for collecting expert demon-
strations for our main experiments as reset-based expert data
collection. A limitation of reset-based expert data collection



0 2 4
0.0

0.5

1.0
St

ac
k

Stack

0 2 4
0.0

0.5

1.0
Open

0 2 4
0.0

0.5

1.0
Close

0 2 4
0.0

0.5

1.0
Lift

0 2 4
0.0

0.5

1.0
Reach

0 2 4
0.0

0.5

1.0
Move

0 2 4
0.0

0.5

1.0

U
ns

ta
ck

-S
ta

ck

Unstack-Stack

0 2 4
0.0

0.5

1.0
Open

0 2 4
0.0

0.5

1.0
Close

0 2 4
0.0

0.5

1.0
Lift

0 2 4
0.0

0.5

1.0
Reach

0 2 4
0.0

0.5

1.0
Move

0 2 4
0.0

0.5

1.0

B
ri

ng

Bring

0 2 4
0.0

0.5

1.0
Open

0 2 4
0.0

0.5

1.0
Close

0 2 4
0.0

0.5

1.0
Lift

0 2 4
0.0

0.5

1.0
Reach

0 2 4
0.0

0.5

1.0
Move

0 2 4
0.0

0.5

1.0

In
se

rt

Insert

0 2 4
0.0

0.5

1.0
Open

0 2 4
0.0

0.5

1.0
Close

0 2 4
0.0

0.5

1.0
Bring

0 2 4
0.0

0.5

1.0
Lift

0 2 4
0.0

0.5

1.0
Reach

0 2 4
0.0

0.5

1.0
Move

0.0 0.2 0.4 0.6 0.8 1.0

Environment Steps (millions)
0.0

0.2

0.4

0.6

0.8

1.0
Su

cc
es

s
R

at
e

LfGP (multi)
LfGP-NS (multi)
BC (multi)

Fig. 2: Performance for LfGP and the multitask baselines across all tasks, shaded area corresponds to standard deviation.

0 2 4
0.0

0.5

1.0
Stack

0 2 4
0.0

0.5

1.0
Unstack-Stack

0 2 4
0.0

0.5

1.0
Bring

0 2 4
0.0

0.5

1.0
Insert

0.0 0.2 0.4 0.6 0.8 1.0

Environment Steps (millions)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

R
at

e

LfGP (“reset” data) LfGP (“play” data)

Fig. 3: The results of our play-based expert data experiments.
Shaded area corresponds to standard deviation.

is that, when training LfGP, the initial state of each individual
policy can be any state thatM has been left in by a previous
policy, which may include states not in the distribution of
ρ0. This “transition” initial state distribution, which we call
ρ0(s|T ′), where T ′ ∈ Tall corresponds to the previously
running policy πT ′ , would be challenging to sample from—
it relies on the policies, and it may include states which
are impractical to manually reset to (e.g. objects may start
off as grasped or in mid-air). Consequently, an alternative
data collection strategy exists, where we alternate between
uniformly sampling the next task for an expert to complete
and having the expert execute that task until success. In
our implementation, we also reset the environment following
ρ0 periodically. See middle section of Fig. 2 in the main
paper for a comparison of the two methods. We show the
comparison between the results of training LfGP with reset-

based and with play-based data on the Fig. 3.
For Stack, Unstack-Stack, and Bring, play-based data

appears to generally increase the learning speed of LfGP,
implying that matching the transition distribution appears to
be beneficial for learning, although there is no significant
effect on final performance. Conversely, for Insert, play-
based data appears to have only a marginal effect on learning
speed, while having fairly significant negative impact on final
performance.

This could be because the Insert task is the least forgiving
in terms of the required final state of the object, and reset-
based data may contain more transitions between near-
insertions and complete insertions than play-based data.

Compared with reset-based data, while play-based data
assures that the expert distribution better matches the learn-
ing distribution, it also has the downside of making it
harder to reuse. In the case of reset-based data, one can
easily add a new dataset corresponding to a new task, while
keeping existing datasets the same. In play-based, and in our
experiments, each individual main task has its own dataset,
given that the “transition” initial state distribution should
contain data from Tall, which changes depending on Tmain.

APPENDIX V
EVALUATION

As stated in our paper, we evaluated all algorithms by
testing the mean output of the main-task policy head in
our environment and generating a success rate based on 50
randomly selected resets. These evaluation episodes were all
run for 360 time steps to match our training environment,
and if a condition for success was met within that time,
they were recorded as a success. See our included video for
sample runs. The remaining section describes in detail how
we evaluated success for each of our main and auxiliary
tasks.

As previously stated, we also trained experts using mod-
ified SAC-X [12] that required us to define a set of reward



functions for each task as well, which we also include in
this section. The authors of [12] focused on sparse rewards,
but also showed a few experiments in which dense rewards
reduced the time to learn adequate policies, so we also
used dense rewards. We would like to note that many of
these reward functions are particularly complex and required
significant manual shaping effort, further motivating the use
of an imitation learning scheme like the one presented in this
paper. It is possible that we could have gotten away with
sparse rewards, such as those used in [12], but our compute
resources made this impractical—for example, in [12], their
agent took 5000 episodes × 36 actors × 360 time steps =
64.8 M time steps to learn their stacking task, which would
have taken over a month of wall-time on our fastest machine.
To see the specific values used for the rewards and success
conditions described in these sections, see our included code.

Unless otherwise stated, each of the success conditions
in this section had to be held for 10 time steps, or 0.5
seconds, before they registered as a success. This was to
prevent registering a success when, for example, the blue
block slipped off the green block during Stack.

A. Common

For each of these functions, we use the following common
labels:
• pb: blue block position,
• vb: blue block velocity,
• ab: blue block acceleration,
• pg: green block position,
• pe: end-effector tool center point position (TCP),
• ps: center of a block pushed into one of the slots,
• g1: (scalar) gripper finger 1 position,
• g2: (scalar) gripper finger 2 position, and
• ag: (scalar) gripper open/close action.

A block is flat on the tray when pb,z = 0 or pg,z = 0. To
further reduce training time for SAC-X experts, all rewards
were set to 0 if ‖pb−pe‖ > 0.1 and ‖pg−pe‖ > 0.1 (i.e., the
TCP must be within 10 cm of either block). During training
while using the Unstack-Stack variation of our environment,
a penalty of -0.1 was added to each reward if ‖pg,z‖ > 0.001
(i.e., there was a penalty to all rewards if the green block
was not flat on the tray).

B. Stack/Unstack-Stack

The evaluation conditions for Stack and Unstack-Stack
are identical, but in our Unstack-Stack experiments, the
environment is manually set to have the green block start
on top of the blue block.

1) Success: Using internal PyBullet commands, we check
to see whether the blue block is in contact with the green
block and is not in contact with both the tray and the gripper.

2) Reward: We include a term for checking the distance
between the blue block and the spot above the the green
block, a term for rewarding increasing distance between the
block and the TCP once the block is stacked, a term for
shaping lifting behaviour, a term for rewarding closing the
gripper when the block is within a tight reaching tolerance,

and a term for rewarding the opening the gripper once the
block is stacked.

C. Bring/Insert

We use the same success and reward calculations for Bring
and Insert, but for Bring the threshold for success is 3 cm,
and for insert, it is 2.5 mm.

1) Success: We check that the distance between pb and
ps is less than the defined threshold, that the blue block is
touching the tray, and that the end-effector is not touching
the block. For insert, the block can only be within 2.5 mm
of the insertion target if it is correctly inserted.

2) Reward: We include a term for checking the distance
between the pb and ps and a term for rewarding increas-
ing distance between pb and pe once the blue block is
brought/inserted.

D. Open-Gripper/Close-Gripper

We use the same success and reward calculations for
Open-Gripper and Close-Gripper, apart from inverting the
condition.

1) Success: For Open-Gripper and Close-Gripper, we
check to see if ag < 0 or ag > 0 respectively.

2) Reward: We include a term for checking the action, as
we do in the success condition, and also include a shaping
term that discourages high magnitudes of the movement
action.

E. Lift

1) Success: We check to see if pb,z > 0.06.
2) Reward: We add a dense reward for checking the

height of the block, but specifically also check that the
gripper positions correspond to being closed around the
block, so that the block does not simply get pushed up
the edges of the tray. We also include a shaping term for
encouraging the gripper to close when the block is reached.

F. Reach

1) Success: We check to see if ‖pe − pb‖ < 0.015.
2) Reward: We have a single dense term to check the

distance between pe and pb.

G. Move-Object

For Move-Object, we changed the required holding time
for success to 1 second, or 20 time steps.

1) Success: We check to see if the vb > 0.05 and ab < 5.
The acceleration condition ensures that the arm has learned to
move the block in smooth trajectories, rather than vigorously
shaking it or continuosly picking up and dropping it.

2) Reward: We include a velocity term and an accelera-
tion penalty, as in the success condition, but also include a
dense bonus for lifting the block.



0 1 2 3 4

0

200

400

600

Stack

0 1 2 3 4

0

200

400

600

800

1000

Unstack-Stack

0 1 2 3 4
0

100

200

300

400

500

Bring

0 1 2 3 4

0

100

200

300

400

500
Insert

0.0 0.2 0.4 0.6 0.8 1.0

Environment Steps (millions)

0.0

0.2

0.4

0.6

0.8

1.0

E
pi

so
de

R
et

ur
n

LfGP (multi)
LfGP-NS (multi)

BC (multi)
DAC

BC
BC (less data)

Expert

Fig. 4: Episode return for LfGP compared with all baselines. Shaded area corresponds to standard deviation.

0 2 4
0

500

St
ac

k

Stack

0 2 4

0

200

Open

0 2 4

0

200

Close

0 2 4

0

250

500

Lift

0 2 4

100

200

300
Reach

0 2 4

0

200

400

Move

0 2 4
0

500

U
ns

ta
ck

-S
ta

ck

Unstack-Stack

0 2 4

0

200

Open

0 2 4

0

200

Close

0 2 4

0

200

400
Lift

0 2 4

0

200

Reach

0 2 4

0

200

Move

0 2 4
0

200

400

B
ri

ng

Bring

0 2 4

0

200

Open

0 2 4

0

200

Close

0 2 4

0

250

500
Lift

0 2 4
0

200

Reach

0 2 4

0

200

Move

0 2 4
0

200

400

In
se

rt

Insert

0 2 4

0

200

Open

0 2 4

0

200

Close

0 2 4

200

400

Bring

0 2 4

0

250

500
Lift

0 2 4
0

200

Reach

0 2 4

0

200

Move

0.0 0.2 0.4 0.6 0.8 1.0

Environment Steps (millions)
0.0

0.2

0.4

0.6

0.8

1.0

E
pi

so
de

R
et

ur
n

LfGP (multi)
LfGP-NS (multi)
BC (multi)

Fig. 5: Episode return for LfGP compared with multitask baselines on all tasks. Shaded area corresponds to standard deviation.

APPENDIX VI
RETURN PLOTS

As previously stated, we generated hand-crafted reward
functions for each of our tasks for the purpose of training
our SAC-X experts. Given that we have these rewards, we
can also generate return plots corresponding to our results
to add extra insight. The episode return plots corresponding
to our main task performance (Figure 3 of the main paper),
multitask performance (Figure 4 of the main paper), transfer
performance (Figure 5 of the main paper) and play-based
expert data performance (Figure 6 of the main paper) are
shown in Fig. 4, Fig. 5, and Fig. 6 respectively. The patterns
displayed in these plots are, for the most part, quite similar to
the success rate plots. One notable exception was the fact that
in Unstack-Stack, DAC performed far worse than LfGP as
measured by return, as opposed to success rate—this can be
explained by the fact that the DAC policies learned to unstack
and restack the blue block continually, rather than letting
the blue block rest on top of the green block (see included
videos). As well, in the transfer experiments, it becomes clear
that transferring from existing models did, in fact, have a

notable increase in training speed for all tasks, which was
not necessarily as evident from observing the success rate
plots.

APPENDIX VII
MODEL ARCHITECTURES AND HYPERPARAMETERS

All the single-task models share the same network archi-
tectures and all the multitask models share the same network
architectures. All layers are initialized using the PyTorch
default methods [2].

For the single-task variant, the policy is a fully-connected
network with two hidden layers followed by ReLU activa-
tion. Each hidden layer consists of 256 hidden units. The
output of the policy is split into two vectors, mean µ̂ and
variance σ̂2. The vectors are used to construct a Gaussian
distribution (i.e. N(µ̂, σ̂2I), where I is the identity matrix).
When computing actions, we squash the samples using the
tanh function, and bounding the actions to be in range
[−1, 1], as done in SAC [9]. The variance σ̂2 is computed
by applying a softplus function followed by a sum with an
epsilon ε = 1e-7 to prevent underflow: σ̂i = softplus(x̂i)+ε.



0 1 2

0

200

400

600
Move Object to Stack

0 1 2

0

250

500

750

Stack to Unstack-Stack

0 1 2
0

200

400

Move Object to Bring

0 1 2

0

200

400

Bring to Insert

0.0 0.2 0.4 0.6 0.8 1.0

Environment Steps (millions)

0.0

0.2

0.4

0.6

0.8

1.0
E

pi
so

de
R

et
ur

n

LfGP (from scratch) LfGP (transfer)

0 2 4

0

200

400

600

Stack

0 2 4

0

500

Unstack-Stack

0 2 4
0

200

400

Bring

0 2 4

0

200

400

Insert

0.0 0.2 0.4 0.6 0.8 1.0

Environment Steps (millions)

0.0

0.2

0.4

0.6

0.8

1.0

E
pi

so
de

R
et

ur
n

LfGP (“reset” data) LfGP (“play” data)

Fig. 6: Left: Episode return for our transfer experiments. Right:
Episode return for our play-based expert data experiments. Shaded
area corresponds to standard deviation.

The Q-functions are fully-connected networks with two hid-
den layers followed by ReLU activation. Each hidden layer
consists of 256 hidden units. The output of the Q-function
is a scalar corresponding to the value estimate given the
current state-action pair. Finally, The discriminator is a fully-
connected network with two hidden layers followed by tanh
activation. Each hidden layer consists of 256 hidden units.
The output of the discriminator is a scalar corresponding to
the logits to the sigmoid function. The sigmoid function can
be viewed as the probability of the current state-action pair
coming from the expert distribution.

For multitask variant, the policies and the Q-functions
share their initial layers. There are two shared fully-
connected layers followed by ReLU activation. Each layer
consists of 256 hidden units. The output of the last shared
layer is then fed into the policies and Q-functions. Each
policy head and Q-function head correspond to one task and
have the same architecture: a two-layered fully-connected
network followed by ReLU activations. The output of the

policy head corresponds to the parameters of a Gaussian
distribution, as described previously. Similarly, the output
of the Q-function head corresponds to the value estimate.
Finally, The discriminator is a fully-connected network with
two hidden layers followed by tanh activation. Each hidden
layer consists of 256 hidden units. The output of the discrim-
inator is a vector, where the ith entry corresponds to the logit
to the sigmoid function for task Ti. The ith sigmoid function
corresponds to the probability of the current state-action pair
coming from the expert distribution in task Ti.

The hyperparameters for our experiments are listed in
Table II and Table III. In BC, overfit tolerance refers to the
number of full dataset training epochs without an improve-
ment in validation error before we stop training. All models
are optimized using Adam Optimizer [13] with PyTorch
default values, unless specified otherwise.

TABLE II: Hyperparameters for AIL algorithms across all tasks.

Algorithm LfGP (Ours) LfGP-NS DAC

Total Interactions 4M
Buffer Size 4M
Buffer Warmup 1000
Initial Exploration 1000

Intention
γ 0.99
Batch Size 256
Q Update Freq. 1
Target Q Update Freq. 1
π Update Freq. 1
Polyak Averaging 0.005
Q Learning Rate 3e-4
π Learning Rate 1e-5
α Learning Rate 3e-4
Initial α 1
Target Entropy 4
Max. Gradient Norm 10

Discriminator
Learning Rate 3e-4
Batch Size 256
Gradient Penalty λ 10

Scheduler
Type Q-table Select Tmain N/A
ξ 45 N/A N/A
φ 0.6 N/A N/A
Initial Temp. 360 N/A N/A
Temp. Decay 0.9995 N/A N/A
Min. Temp. 0.1 N/A N/A

TABLE III: Hyperparameters for BC algorithms across all tasks.

Algorithm BC BC (Less Data) Multitask BC

Batch Size 256
Learning Rate 3e-4

Overfit Tolerance 100



APPENDIX VIII
EXPERIMENTAL HARDWARE

For a list of the software we used in this work, see
our included code and instructions. We used a number of
different computers for completing experiments:

1) GPU: NVidia Quadro RTX 8000, CPU: AMD - Ryzen
5950x 3.4 GHz 16-core 32-thread, RAM: 64GB, OS:
Ubuntu 20.04.

2) GPU: NVidia V100 SXM2, CPU: Intel Gold 6148
Skylake @ 2.4 GHz (only used 4 threads), RAM:
32GB, OS: CentOS 7.

3) GPU: Nvidia GeForce RTX 2070, CPU: RYZEN
Threadripper 2990WX, RAM: 32GB, OS: Ubuntu
20.04.

APPENDIX IX
OPEN-ACTION AND CLOSE-ACTION DISTRIBUTION

MATCHING

There was one exception to the “reset-based” method we
used for collecting our expert data. Specifically, our Open-
Gripper and Close-Gripper tasks required several additional
considerations. It is worth reminding the reader that our
Open-Gripper and Close-Gripper tasks were meant to simply
open or close the gripper, respectively, while remaining
reasonably close to either block. If we were to use the
approach described above verbatim, the Open-Gripper and
Close-Gripper data would contain no (s, a) pairs where
the gripper actually released or grasped the block, instead
immediately opening or closing the gripper and simply
hovering near the blocks. Perhaps unsurprisingly, this was
detrimental to our algorithm’s performance: as one example,
an agent attempting to learn Stack would, if Open-Gripper
was selected while the blue block was held above the green
block, move the currently grasped blue block away from the
green block before dropping it on the tray. This behaviour,
of course, is not what we would want, but it better matches
an expert distribution collected using the method described
above.

To mitigate this, our Open-Gripper data actually contain
a mix of each of the other sub-tasks called first for 45
time steps, followed by a switch to Open-Gripper, ensuring
that the expert dataset contains some degree of block-
releasing, with the trade-off being that 25% of the Open-
Gripper expert data is specific to whatever the main task
is. We left this detail out of our main paper for clarity,
since it corresponds to only 4-5% of the data (2250/45000
or 2250/54000) that was claimed as being reusable being,
in actuality, task-specific. Similarly, the Close-Gripper data
calls Lift for 15 time steps before switching to Close-Gripper,
ensuring that the Close-gripper dataset will contain a large
proportion of data where the block is actually grasped. Given
the simplicity of designing a reward function in these two
cases, a natural question is whether Open-Gripper and Close-
Gripper could use hand-crafted reward functions, or even
hand-crafted policies, instead of these specialized datasets. In
our experiments, both of these alternatives proved to be quite

detrimental to our algorithm, so we leave further exploration
of these options for future work.

REFERENCES

[1] B. Chan, “Rl sandbox,” https://github.com/chanb/rl sandbox public,
2020.

[2] A. Paszke, et al., “Pytorch: An imperative style, high-performance
deep learning library,” in Advances in Neural Information Processing
Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, and R. Garnett, Eds. Curran Associates, Inc., 2019, pp.
8024–8035.

[3] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C.
Courville, “Improved Training of Wasserstein GANs,” in Proc.
31st Ann. Conf. Neural Information Processing Systems (NIPS’17),
I. Guyon, et al., Eds. Long Beach, USA: Curran Associates, Inc.,
Dec. 2017, pp. 5767–5777.

[4] I. Kostrikov, K. K. Agrawal, D. Dwibedi, S. Levine, and J. Tomp-
son, “Discriminator-Actor-Critic: Addressing Sample Inefficiency and
Reward Bias in Adversarial Imitation Learning,” in Proc. Int. Conf.
Learning Representations (ICLR’19), New Orleans, USA, May 2019.

[5] D. P. Kingma and M. Welling, “Auto-Encoding Variational Bayes,”
arXiv:1312.6114 [cs, stat], Dec. 2013.

[6] S. Fujimoto, H. van Hoof, and D. Meger, “Addressing Function
Approximation Error in Actor-Critic Methods,” in Proc. 35th Int. Conf.
Machine Learning (ICML’18), Stockholm, Sweden, July 2018, pp.
1582–1591.

[7] H. van Hasselt, A. Guez, and D. Silver, “Deep Reinforcement Learning
with Double Q-learning,” 2015.

[8] V. Mnih, et al., “Human-level control through deep reinforcement
learning,” Nature, vol. 518, no. 7540, pp. 529–533, Feb. 2015.

[9] T. Haarnoja, et al., “Soft Actor-Critic Algorithms and Applications,”
arXiv:1812.05905 [cs, stat], Jan. 2019.

[10] I. Kostrikov, “Pytorch implementations of reinforcement learning
algorithms,” https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail,
2018.

[11] E. Coumans and Y. Bai, “PyBullet, a Python module for physics
simulation for games, robotics and machine learning,” 2016.

[12] M. Riedmiller, et al., “Learning by Playing Solving Sparse Reward
Tasks from Scratch,” in Proc. 35th Int. Conf. Machine Learning
(ICML’18). Stockholm, Sweden: PMLR, July 2018, pp. 4344–4353.

[13] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimiza-
tion,” in Proc. Int. Conf. Learning Representations (ICLR’15), San
Diego, USA, May 2015.

https://github.com/chanb/rl_sandbox_public
https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail

	Appendix I: Learning from Guided Play Algorithm
	Appendix II: Environment Details
	Appendix III: Performance Results for Auxiliary Tasks
	Appendix IV: Procedure for Obtaining Experts
	Play-Based Expert Data Collection Results

	Appendix V: Evaluation
	Common
	Stack/Unstack-Stack
	Success
	Reward

	Bring/Insert
	Success
	Reward

	Open-Gripper/Close-Gripper
	Success
	Reward

	Lift
	Success
	Reward

	Reach
	Success
	Reward

	Move-Object
	Success
	Reward


	Appendix VI: Return Plots
	Appendix VII: Model Architectures and Hyperparameters
	Appendix VIII: Experimental Hardware
	Appendix IX: Open-Action and Close-Action Distribution Matching
	References

